
WSUS Cleanup Wizard Fails and stops WSUS Service

Problem
I’ve been having issues with a WSUS Server recently, when I go to clean-up the server and reclaim
some space from unused/superseded updates. ~10/13/2019

The symptoms are as follows:

Running the Cleanup Wizard hangs at Deleting Unused Updates, and then the WSUS Console fails,
and the UI asks you to “Reset Node”. Resetting the node restarts the service, and all is well until you
try to run the Cleanup Wizard again and try to Delete Updates but will loop on:

• Hang UI
• WSUS Service stops
• UI request you to reset node.

Analysis
When you start digging into the WSUS logs:

• C:\Program Files\UpdateServices\LogFiles\SoftwareDistribution.log

…You find out there was a timeout exception when WSUS ran the procedure:

• spGetObsoleteUpdatesToCleanup

2019-10-14 06:06:17.111 UTC Warning w3wp.349 SoapExceptionProcessor.SerializeAndThrow Discarding stack
trace for user DOMAIN\Administrator, IP Address ::1, exception System.Data.SqlClient.SqlException (0x80131904): Execution Timeout
Expired. The timeout period elapsed prior to completion of the operation or the server is not responding. --->
System.ComponentModel.Win32Exception (0x80004005): The wait operation timed out

 at Microsoft.UpdateServices.DatabaseAccess.DBConnection.DrainObsoleteConnections(SqlException e)

 at Microsoft.UpdateServices.DatabaseAccess.DBConnection.ExecuteReader()

 at Microsoft.UpdateServices.Internal.SingleResultSetSPHandler.ExecuteStoredProcedure(DBConnection connection)

 at Microsoft.UpdateServices.Internal.GenericDataAccess.ExecuteSP(String spName, DBParameterCollection args, IExecuteSPHandler
handler, Int32 queryTimeoutInSeconds)

 at Microsoft.UpdateServices.Internal.GenericDataAccess.ExecuteSP(String spName, DBParameterCollection args, IExecuteSPHandler
handler)

 at Microsoft.UpdateServices.Internal.DatabaseAccess.CommonDataAccess.ExecuteSPSingleResultSet(String spName,
DBParameterCollection args, Type resultType, Int32 queryTimeoutInSeconds)

 at Microsoft.UpdateServices.Internal.DatabaseAccess.CommonDataAccess.ExecuteSPSingleResultSet(String spName,
DBParameterCollection args, Type resultType)

 at Microsoft.UpdateServices.Internal.DatabaseAccess.AdminDataAccess.ExecuteSPGetObsoleteUpdatesToCleanup()

 at Microsoft.UpdateServices.Internal.ApiRemoting.ExecuteSPGetObsoleteUpdatesToCleanup()

When you go to SQL Server Management Studio, and run that procedure manually, it runs well beyond 2
minutes (ASP timeout), and as such the query fails because it takes longer than expected. In fact, I’ve let
it run for 25 minutes or more and it didn’t return the expected result set and had to cancel that query.

In examining the OOTB code, we find that it is basically, looking at a few tables and returning a single
column “LocalUpdateID” after pruning the results based on a few where clauses as follows:

ALTER PROCEDURE [dbo].[spGetObsoleteUpdatesToCleanup]
AS
SET NOCOUNT ON
DECLARE @minimumDeadDeploymentTime DATETIME
DECLARE @revisionDeletionTimeThreshold INT
SELECT @revisionDeletionTimeThreshold=RevisionDeletionTimeThreshold FROM
dbo.tbConfigurationC
IF @@ERROR <> 0
BEGIN
 RAISERROR('spGetObsoleteUpdatesToCleanup: failed to get RevisionDeletionTimeThreshold
from dbo.tbConfigurationC', 16, -1)
 RETURN (1)
END
SET @minimumDeadDeploymentTime = DATEADD(day, 0 - @revisionDeletionTimeThreshold,
getutcdate())
SELECT DISTINCT u.LocalUpdateID FROM dbo.tbUpdate u
 INNER JOIN dbo.tbRevision r ON r.LocalUpdateID = u.LocalUpdateID
 INNER JOIN dbo.tbProperty p ON p.RevisionID = r.RevisionID
WHERE
 p.PublicationState = 1
 AND (p.ExplicitlyDeployable = 1 OR p.UpdateType IN ('Category', 'Detectoid'))
 AND p.ReceivedFromCreatorService <= @minimumDeadDeploymentTime
 AND NOT EXISTS (SELECT * FROM dbo.tbBundleDependency bd
 INNER JOIN dbo.tbRevision r1 ON bd.BundledRevisionID = r1.RevisionID
 WHERE r1.LocalUpdateID = u.LocalUpdateID)
 AND NOT EXISTS (SELECT * FROM dbo.tbPrerequisiteDependency pd
 INNER JOIN dbo.tbRevision r2 ON pd.PrerequisiteRevisionID =
r2.RevisionID
 WHERE r2.LocalUpdateID = u.LocalUpdateID)
 AND NOT EXISTS (SELECT * FROM dbo.tbDeployment d
 INNER JOIN dbo.tbRevision r3 ON d.RevisionID = r3.RevisionID
 WHERE r3.LocalUpdateID = u.LocalUpdateID
 AND d.TargetGroupTypeID = 0
 AND d.ActionID IN (0, 1, 3))
 AND NOT EXISTS (SELECT * FROM dbo.tbDeadDeployment dd
 INNER JOIN dbo.tbRevision r4 ON dd.RevisionID = r4.RevisionID
 WHERE r4.LocalUpdateID = u.LocalUpdateID
 AND dd.TargetGroupTypeID = 0
 AND dd.ActionID IN (0, 1, 3)
 AND dd.TimeOfDeath > @minimumDeadDeploymentTime)
ORDER BY u.LocalUpdateID DESC
RETURN (0)

GO

If we grab the first part of this query (below), it seems to return the results fine and relatively quickly
returns the results. However, that is also dependant on what the WSUS Server is doing at the time
(see notes below)…

SET NOCOUNT ON
DECLARE @minimumDeadDeploymentTime DATETIME
DECLARE @revisionDeletionTimeThreshold INT
SELECT @revisionDeletionTimeThreshold=RevisionDeletionTimeThreshold FROM
dbo.tbConfigurationC
IF @@ERROR <> 0
BEGIN
 RAISERROR('spGetObsoleteUpdatesToCleanup: failed to get RevisionDeletionTimeThreshold
from dbo.tbConfigurationC', 16, -1)
 RETURN (1)
END
SET @minimumDeadDeploymentTime = DATEADD(day, 0 - @revisionDeletionTimeThreshold,
getutcdate())
SELECT DISTINCT u.LocalUpdateID FROM dbo.tbUpdate u
 INNER JOIN dbo.tbRevision r ON r.LocalUpdateID = u.LocalUpdateID
 INNER JOIN dbo.tbProperty p ON p.RevisionID = r.RevisionID
WHERE
 p.PublicationState = 1
 AND (p.ExplicitlyDeployable = 1 OR p.UpdateType IN ('Category', 'Detectoid'))
 AND p.ReceivedFromCreatorService <= @minimumDeadDeploymentTime
 AND NOT EXISTS (SELECT * FROM dbo.tbBundleDependency bd
 INNER JOIN dbo.tbRevision r1 ON bd.BundledRevisionID = r1.RevisionID
 WHERE r1.LocalUpdateID = u.LocalUpdateID)

I found that this query can take 25+ minutes to run:

However, at startup, WSUS queries the tbUpdates table for all the UpdateIDs, and can cause issues with
this query, which was some of the intermittent behavior I was seeing while working on this problem.

After starting the WSUS Service, This log entry should indicate that the server has successfully
performed it’s lookup, and it’s now safe to query that table again.

2019-10-15 05:12:38.192 UTC Info w3wp.36 DependencyCache.RefreshThreadStart read
396699 UpdateIDs from DB in 547 ms

Once this log entry shows up in the SoftwareDistribution.log, then you should be able to use the WSUS
Cleanup Wizard to run the necessary cleanups, but I would almost argue that we need to add something
to the procedure to avoid that type of race condition:

i.e. SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

Once you can query the tbUpdates table for the LocalUpdatesID, it might take HOURS/Days to delete
the various updates depending on exactly how many updates it’s trying to cleanup. In my case, it was
trying to delete 2700+ updates. From that perspective, it might be easier to monitor this process using
this SQL code. The following code is slightly different from spGetObsoleteUpdatesToCleanup with logic

to incorporate spDeleteUpdate from a cursor to delete the obsolete Updates and show you what
updates it is deleting (as denoted by the LocalUpdateID). In my troubleshooting, many of the updates
were related to Windows 10 Cumulative updates, or to Windows Defender Security Intelligence updates
(definition updates).

In diagnosing this problem, it is apparent that the sheer number of Revisions to the Windows Defender
Definition files are in part the cause of the problem with the Cleanup Server Wizard crashing (when
having WSUS supply Windows Defender Definition updates).

NOTE: An updated version of this code that allows you to Display or Display/Delete the Obsolete
Updates is available here: WSUSGetObsoleteUpdatesAndDeleteThem.sql

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

IF OBJECT_ID('tempdb..#localupdateids') IS NOT NULL
 DROP TABLE #localupdateids
--ENDIF

CREATE TABLE #localupdateids (LocalUpdateID INT, UpdateTitle varchar(200))

SET NOCOUNT ON

DECLARE @minimumDeadDeploymentTime DATETIME
DECLARE @revisionDeletionTimeThreshold INT
SELECT @revisionDeletionTimeThreshold=RevisionDeletionTimeThreshold FROM
dbo.tbConfigurationC
IF @@ERROR <> 0
 BEGIN
 RAISERROR('spGetObsoleteUpdatesToCleanup: failed to get
RevisionDeletionTimeThreshold from dbo.tbConfigurationC', 16, -1)
 END
ELSE
 BEGIN
 SET @minimumDeadDeploymentTime = DATEADD(day, 0 -
@revisionDeletionTimeThreshold, getutcdate())

 INSERT INTO #localupdateids

 SELECT DISTINCT u.LocalUpdateID,PCLP.Title as UpdateTitle FROM
dbo.tbUpdate u
 INNER JOIN dbo.tbRevision r ON r.LocalUpdateID = u.LocalUpdateID --
attach revisions for further joins
 INNER JOIN dbo.tbProperty p ON p.RevisionID = r.RevisionID -- attach
the properties for further joins
 INNER JOIN dbo.tbPreComputedLocalizedProperty PCLP ON
PCLP.UpdateID=U.UpdateID -- attach PCLP so we can get the Update Title
 INNER JOIN dbo.tbLanguage L on L.ShortLanguage = PCLP.ShortLanguage
and L.Enabled = 1 -- attach Languages so we can find out what language(s) is/are
currently subscribed
 INNER JOIN dbo.tbLanguageInSubscription LIS on LIS.LanguageID =
L.LanguageID -- filter out language names that are not subscribed (so we don't end up
with update names in an unexpected language)
 --note multiple subscribed languages will mess with the logic
here because it will try to delete the same update twice (once for each language)
 WHERE

http://www.manross.net/download.aspx?file=/wsus/reporting/WSUSGetObsoleteUpdatesAndDeleteThem.sql

 p.PublicationState = 1
 AND (p.ExplicitlyDeployable = 1 OR p.UpdateType IN ('Category',
'Detectoid'))
 AND p.ReceivedFromCreatorService <= @minimumDeadDeploymentTime

 --reworked the AND NOT EXISTS from spGetObsoleteUpdatesToCleanup into these
deletes from my temp table as a workaround for the enormous amount of time that the
original procedure takes to find obsolete updates

 --remove updates from the list that are dependencies
 DELETE from #localupdateids
 WHERE LocalUpdateID IN (SELECT LocalUpdateID FROM dbo.tbBundleDependency
bd INNER JOIN dbo.tbRevision r1 ON bd.BundledRevisionID = r1.RevisionID)

 --remove updates from the list that are prerequisites
 DELETE from #localupdateids
 WHERE LocalUpdateID IN (SELECT LocalUpdateID FROM
dbo.tbPrerequisiteDependency pd INNER JOIN dbo.tbRevision r2 ON pd.PrerequisiteRevisionID
= r2.RevisionID)

 --remove updates from the list that are currently being deployed
 DELETE from #localupdateids
 WHERE LocalUpdateID IN (SELECT LocalUpdateID FROM dbo.tbDeployment d
INNER JOIN dbo.tbRevision r3 ON d.RevisionID = r3.RevisionID WHERE d.TargetGroupTypeID =
0 AND d.ActionID IN (0, 1, 3))

 --remove updates from the list that are "dead deployments"?
 DELETE from #localupdateids
 WHERE LocalUpdateID IN (SELECT LocalUpdateID FROM dbo.tbDeadDeployment dd
INNER JOIN dbo.tbRevision r4 ON dd.RevisionID = r4.RevisionID WHERE dd.TargetGroupTypeID
= 0 AND dd.ActionID IN (0, 1, 3) AND dd.TimeOfDeath > @minimumDeadDeploymentTime)

 select * from #localupdateids
 DECLARE @max_title_length INT
 SELECT @max_title_length = max(len(UpdateTitle)) from #localupdateids
 select @max_title_length

 --now run through the list of updates and delete each update (and ALL THE
REVISIONS -- code in spDeleteUpdate handles that)
 DECLARE @msg nvarchar(1000)
 DECLARE @update_title varchar(400)
 DECLARE @update_id INT
 DECLARE @curitem INT, @totaltodelete INT
 SET @totaltodelete = (SELECT COUNT(*) FROM #localupdateids)
 SELECT @curitem=1

 SET @msg = 'Total Updates To Delete = ' + cast(@totaltodelete as
varchar(5)) + ' (processing in reverse order)' RAISERROR(@msg,0,1) WITH NOWAIT

 DECLARE WC Cursor FOR SELECT LocalUpdateID, UpdateTitle FROM
#localupdateids order by LocalUpdateID DESC

 OPEN WC
 FETCH NEXT FROM WC INTO @update_id,@update_title WHILE (@@FETCH_STATUS > -
1)
 BEGIN
 SET @msg = cast(getdate() as varchar(30)) + ' - ' + replicate(' ',5
- len(cast(@curitem as varchar(5)))) + cast(@curitem as varchar(5)) + '/' +

cast(@totaltodelete as varchar(5)) + ': Deleting ''' + @update_title + '''' + replicate('
', @max_title_length - len(@update_title)) + ' -> ' + CONVERT(varchar(10), @update_id)
 RAISERROR(@msg,0,1) WITH NOWAIT

 EXEC spDeleteUpdate @localUpdateID = @update_id
 --RAISERROR(' waiting 5 minutes',0,1) WITH NOWAIT
 --WAITFOR DELAY '00:05:00'
 SET @curitem = @curitem +1
 FETCH NEXT FROM WC INTO @update_id, @update_title
 END
 CLOSE WC

 DEALLOCATE WC

 DROP TABLE #localupdateids
 END
--ENDIF

While running this SQL code above, you should see log entries in the SoftwareDistribution.log similar to
below every time an Update is deleted as denoted in the Query Pane on the “Messages” tab of SQL
Server Management Studio… If not, that can indicate an issue with WSUS, and indicate you should
restart WSUS, IIS, and/or SQL Server and then wait for the log entry indicating that WSUS successfully
looked up all the UpdateIDs in nnn miliseconds (as shown above) before trying to delete Obsolete
Updates again:

2019-10-15 05:39:50.495 UTC Info WsusService.8 SusEventDispatcher.TriggerEvent TriggerEvent called for
NotificationEventName: DeploymentChange, EventInfo: DeploymentChange

2019-10-15 05:39:50.495 UTC Info w3wp.388 ThreadEntry ThreadHelper.ThreadStart

2019-10-15 05:39:50.511 UTC Info w3wp.388 SusEventDispatcher.DispatchManagerWorkerThreadProc
 DispatchManager Worker Thread Processing NotificationEvent: DeploymentChange

2019-10-15 05:39:50.511 UTC Info w3wp.388 DeploymentChangeNotification.InternalEventHandler deployment change
event received

2019-10-15 05:39:50.511 UTC Info w3wp.388 RevisionIdCacheChangeNotificationDispatcher.InternalEventHandler
 Get event DeploymentChange from dispatchmanager

2019-10-15 05:39:50.511 UTC Info w3wp.10 SusEventDispatcher.TriggerEvent TriggerEvent called for
NotificationEventName: DeploymentChange, EventInfo: DeploymentChange

2019-10-15 05:39:50.511 UTC Info w3wp.391 ThreadEntry ThreadHelper.ThreadStart

2019-10-15 05:39:50.511 UTC Info w3wp.391 SusEventDispatcher.DispatchManagerWorkerThreadProc
 DispatchManager Worker Thread Processing NotificationEvent: DeploymentChange

2019-10-15 05:39:50.511 UTC Info w3wp.391 ChangeNotificationDispatcher.InternalEventHandler Get event
DeploymentChange from dispatchmanager

Keep in mind that Updates like Windows Defender (that update daily, or even hourly) pretty much cause
WSUS to have issues with the WSUS Server Cleanup tool because of their sheer number of updates and
the fact that any particular update has close to 20 files attached. As well, the number of revisions to a
single update undoubtedly cause issues to the SQL Code when looking up dependency/superseding
information. The “SLIM” and “DELTA” files for 2 Windows Defender definition updates are shown here:

NOTE: This is a screenshot from a sample web report for something I created to view currently
downloading patch files to WSUS and shows the number of patch files related to 2 patches that were

auto-approved by some automation I wrote.

Regular Maintenance

It’s also good to note that the following script should be run with regularity to ensure that the WSUS
Database is as optimized as it can be from a SQL index and statistics perspective.

This particular example was derived from the Microsoft SQL Server help files (with some minor
changes/updates)

/*Perform a 'USE <database name>' to select the database in which to run the script.*/
USE SUSDB

sp_updatestats 'resample'

GO
-- Declare variables
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL

-- Decide on the maximum fragmentation to allow
SELECT @maxfrag = 1.0

-- Declare cursor
DECLARE tables CURSOR FOR
 SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = 'BASE TABLE'

-- Create the table
CREATE TABLE #fraglist (
 ObjectName CHAR (255),
 ObjectId INT,
 IndexName CHAR (255),
 IndexId INT,
 Lvl INT,
 CountPages INT,
 CountRows INT,
 MinRecSize INT,
 MaxRecSize INT,
 AvgRecSize INT,
 ForRecCount INT,
 Extents INT,
 ExtentSwitches INT,
 AvgFreeBytes INT,
 AvgPageDensity INT,
 ScanDensity DECIMAL,
 BestCount INT,
 ActualCount INT,
 LogicalFrag DECIMAL,
 ExtentFrag DECIMAL)

-- Open the cursor
OPEN tables

-- Loop through all the tables in the database
FETCH NEXT
 FROM tables
 INTO @tablename

WHILE @@FETCH_STATUS = 0
BEGIN
-- Do the showcontig of all indexes of the table
 INSERT INTO #fraglist
 EXEC ('DBCC SHOWCONTIG (''' + @tablename + ''')
 WITH FAST, TABLERESULTS, ALL_INDEXES, NO_INFOMSGS')
 FETCH NEXT
 FROM tables

 INTO @tablename
END

-- Close and deallocate the cursor
CLOSE tables
DEALLOCATE tables

SELECT ObjectName, LogicalFrag
 FROM #fraglist
 WHERE LogicalFrag >= @maxfrag
 AND INDEXPROPERTY (ObjectId, IndexName, 'IndexDepth') > 0

-- Declare cursor for list of indexes to be defragged
DECLARE indexes CURSOR FOR
 SELECT ObjectName, ObjectId, IndexId, LogicalFrag
 FROM #fraglist
 WHERE LogicalFrag >= @maxfrag
 AND INDEXPROPERTY (ObjectId, IndexName, 'IndexDepth') > 0

-- Open the cursor
OPEN indexes

-- loop through the indexes
FETCH NEXT
 FROM indexes
 INTO @tablename, @objectid, @indexid, @frag

WHILE @@FETCH_STATUS = 0
BEGIN
 PRINT 'Executing DBCC INDEXDEFRAG (0, ' + RTRIM(@tablename) + ',
 ' + RTRIM(@indexid) + ') - fragmentation currently '
 + RTRIM(CONVERT(varchar(15),@frag)) + '%'
 SELECT @execstr = 'DBCC INDEXDEFRAG (0, ' + RTRIM(@objectid) + ',
 ' + RTRIM(@indexid) + ')'
 EXEC (@execstr)

 FETCH NEXT
 FROM indexes
 INTO @tablename, @objectid, @indexid, @frag
END

-- Close and deallocate the cursor
CLOSE indexes
DEALLOCATE indexes

-- Delete the temporary table

DROP TABLE #fraglist
GO

As well, using a filesystem level defragmentation tool on the SQL database files for WSUS can also help
improve performance. I have used Piriform Defraggler (http://www.defraggler.com) with success to
ensure that my WSUS database and log files are in 1 piece. (example screenshot from the “File List” tab
in Defraggler 2.21.993 with a fragmented SUSDB_log.ldf file). As the WSUS database grows over time,
the database files likely fragment.

This log file is almost 3GB while the Database file is at almost 9GB. This WSUS server only handles ~50
PCs, but has been active for ~10 years and migrated from older Server OS versions up to Server 2016.
Keep in mind that I have pruned out older updates like Windows XP, Windows 7, etc by declining those
updates using SQL Scripts after changing the currently managed OSes/Applications in the WSUS Product
Catalog, and then finishing up by Re-Running the WSUS Cleanup Tool.

Prologue

(revisiting this on 10/26/2019) After going through this ordeal, a few weeks ago, I returned to look at
how many updates might now need cleanup in just the last few weeks (1.5 – 2 weeks) and I was
surprised to see that there were 82 updates that needed cleanup… Again, based on earlier findings,
these were all related to Windows Defender Security Intelligence updates.

Example: Security Intelligence Update for Windows Defender Antivirus - KB2267602 (Version
1.303.11.0) - and 81 other versions

As well, this falls in line with what the WSUS Server Cleanup Wizard showed me (albeit in different
detail). I hope this helps someone other than me.

http://www.defraggler.com/

	Problem
	Analysis
	Regular Maintenance
	Prologue

